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Scme apparent discrepancies in the definition or calculation of the
Coulomb T-matrix are investigated in an approach that uses shielded wave
functions. It i1s found that the screened Coulomb T-matrix behaves anoma-
lously in the neighborhood of the energy shell and is in fact discontinu-
vaz In the limit of zerc screening. A closed-form expression for the
T-matrix, which has been derived previously, is shown to be essentially
correct off the energy shell. ' [ZLL25€4Q/
I. INTRODUCTION

In the usual application of the impulse approximation to a many-body
gcattering problem, it is common to introduce the two-body scattering
matrix or T-matrix <E[ [%) The transition probability can then be

xpressed s an integral in which the T-matrix is folded into the product
of the initial- and final-gtate momenium distributions.

Usually it is nevessary to make further approximations, because ex-
perimental two-body scattering data give information about the T-matrix
only oa the energy shelil ﬁé/::kéé The most common approximation is to
igncre off-the-energy-shell effects completely, putting <£]T!E) ~ (k§|r[5).
Zrr=rer, 1T the Uwo-toly westliring warve Duachlion is known exaetly, the
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Since tae coulomp wave function is known exactly in closed form, it
is .natural to consider using the impulse approximation for atomlc scatter-
ing problems. Such calculatlons have been made bj ‘Pradhan,l for instance,
in the case of electron capture by protons, and by Akerib and Borowitzz
in the case of electron scattering by atomic hydrogen.
Recently, however, there has been, some doubt that the usual formal
geattering theory, which lesads to (1), is valid for a long range force
such as the Coulomb force. Mapleton5 has evaluated the Coulomb wave
CDErnTor 8 carAL
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by expanding it in Coulcmb partial waves, and has shown that the func
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sion Q\v/g difiers from the usual Coulomb wave function by an energy-
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dependent. factor. Previously Okubu and Feldman4 had studied the integral
(+5
equation satisfied by §>»// in momentum space, obtaining 2 similar re-

sult. The T-matrix, whi~h 1s related to the wave operator by T = V§<j){
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is therevy also in =rror.
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Finally, one can show that the integral in (1), which has been
a4
=
svaluated for a Couwlomb petential V(r) = yﬁ<r by several authors,”
s
dloes net lead teo the correct Coulomb scattering amplitude. For if a
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convergence factor 57 is used in (1), the result is
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zrd the princival values of the powers are to be taken. If we now set
p = k¥ and take the limit A =+ O, the scattering amplitude, which is

-43\%1/%\? times the T-matrix, turns out to be

/N
where E%(r) is the usual expression6 for the Coulomb scattering

amplitude:
R s \e/ L1 5
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The squared modulus of the bracketed factor in Eq. (4) is
gn/sinthl), similar to the extra factor found by Mapleton ard by Okubu
and Feldman. If the limit A - O 1is taken before setting p = k, an

additional factor of

NIE sk (5)

appears, so that (2) predicts a discontinuity at the energy shell as well
gz an Incorrect sczttaring =mplitude.

A1l of these difficulties seem to stem from the fact that the Coulomb

t alsc the incident plane

which is fundamental to formal scattering theory, is not strictly valid
ror Coulomb scattering. The same remark applles to the integral egquation
for the T-matrix, whi-n is derived from (7). Recognizing this, Okubu and

Feldman suggested elir - r o renormalization or a cutoff procedwra, designes
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Lhe Ueemisis cosdiibulus 86 p o= & with the proper magnitude.
Unfortunately, the functions sc constructed de not then satisfy the
integral eqﬁation, so that these procedures must be vliewed wlth some
caution.

Cne way to settle the questicn is te find the T-matrix for a szreened
Couwlomb potential and stuldy its behavior as the screening is turned off.
In generzal this is a very diffizult problem, although in principle it
can be solved by an expansizn cf the T-matrix in spheri~al harmonics.

L

If a8 dlgenntivuity at the energy shell exists, hcwever, the 2ocefficient

of ez n sphovical harmornic will be affected; consequently, this pcint can

e chesked easily 17 cne knows only the 1 = O component of the T-matrix.

_~Encwn potentisls for which the @ = O rad

wave furctions are known exactly, the -cutoff Coulomb potential and the

Aulthén potentiai.  2:%h potentials can be made to resemble the crdinary

Coulomb potential except at very large distances from the origin. In the

vgiial wave functions are ussd 1o cimpute the
I = 0 part of the T-matrix. o the Limit of zero scycening the results
ar2 identi~al, and show +hat there is indeed a discontinuity at the
energy <hell. They alss iodi-ate that Eq. (2) is essentially correct
except when = RV.
If. EXEANSION IN SPHERT AT HARMONI XS
We shall adopt del+a-funsticn normalization, so that for large

the wave function

[}

or & Iinit~ range pctentiali is




with

(KF|T|K) (9)

o L aih
wo -4

and

(p|T|E) = (2zWﬂWv(r)m£>dg. (10)

~

The expansion of Wﬁ(r) in spherical harmonics may then be written in

~

the familiar form

A}\(r - (2;?\55/}/2 \/zz + 1)/\1: Flkr) , (11)

Tkr

E@(kr) ~ sin(kr - %gl + §QQ- (12)

For the corresponding expansion of the T-matrix we write

(p|T|k) = - Z% ;zo(zz + 1)%\(§f (o | TAk), (13)

where
1
ZW ) ~
(p]Tpk) = - @E/(E[T'E)%\(ﬁ)dﬁ (E = p-k) (14)
B g
o0
- . ca eis ¥ %\(pr)”\/’(r)%\(kr)rdr. (15)
e ’"
6]
( g. (13) the factor »%@ééﬁ@é_ has been separated from (p'T\Lk) to

slmplify many of the equations in later sechtions.) From the asymptotic

form of 4}@{?) one can show that
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(| 7| k) _\gik ; (16)



and of courge tue integral in Eg. (15) must yield the same result.
For later reference we also gilve the usual expansion6 of the Cculomb

wave function:

oo
5‘ Ly A ANl : (kr)
Wy = B> Wer DB K D) NINLE—, (17)
~ 7=0 ’
v . 1 .
Wl kor) ~ - Zx) - T+ gA)
kad) sin(kr S5l -1 log 2kr A (18)
9@\3 arg T(1 + 1 + 1in). (19)

The charge parameter 1 is defined as in Eq. (3). The Toulomb radial

wave functicns éﬁ(ﬁr) may be expressed in terms of confluent hyper-

geometric functions:

(kr)
§§< " /A\ﬂ {gkr\v/‘ifﬁ;ﬁﬁq\ + 1+ 1n,21 + 23 - 2ikr), (20)

<I/2 s e 1)
~ * Lo+ 1 ) i
A - ==L (21)
. . S
It is customary™ to write
“2lg4
. . e A - 1
(i Vo el
K] = ST (22)

for the pure Zoulomb field, even though the series in Eq. 13 will not .
CONVETge.

In the following se-*lcns we shall be zoncerned primarily with the
ralzulation of ?%( For this purpcse we introduce a related quantity I(p),

which is defined by

L NPTV (x B (k7 )dr, (23)
¥ A
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AR = ??([I(P} - I(p\%- (
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TTI. ZUROFF COULCMB POTENTIAL
Perhaps the simplest way to screen the Joulomb fleld is tc cut it
off at r = R, so that the potential 1s
Yo\
— r <R
Vir) = (25)
O r > R

Within thils field the 1 = 0 wave functicn must be proporticnal to

j%{kzr) {7 o, (28)

where N and ;Q\ are to be determlned. The correct procedure is to
equate logarithmi- Jerivatives at r = R, but to first order in l/kR
this is equivalent to ma*t:hing amplitudes and phases. From Eq. (18) it
follows that
~ 7 ~ - 7] ) ’ 4 °
N ~1, %\ % N log (2kR) (27)

The next step is to raizulate I(p), which may be written

I(p) = 2qu%\(¢1> / el(‘k-p)r/i\‘;jé\(;l + in; 23 -2ikr)ar. (28)

When p = k, the integral .an be performed dire:ztly, yieiding

R
Tk = N‘:/h\(n} AEALLIns 1; -2ikr)
TN - -
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{In this devivation the asymptobtic form of the /}@& function has been
used, so that the result is apparently accurate only to order l/kR. It
can be shown, however, that if logarithmic derivatives are equated to
determine N and 9g< Eq. (29) is exact.) Thus we find that

21
(x| Ty %) = See— (50)

as expected.
When p # %, I(p) may be evaluated by using the integral represen-

+tation

in/
/}};}3\(’1 + in; 2; - 2ikr) = - - 1_3 l>\9, mt (31)

and interchanging the order of integration:

L )

k- p- 2kt

I(p) =

C

For convenience the contour is taken to be that shown in Fig. 1, with

i

prinzipal values of %ig/ and (t - i7<i9/lto be used.

In the first term of Eq. (32) the contour is deformed and enlarged
until it becomes a cirzle whose radius tends to infinity; here we must be
careful to add a term canceling the contribution that comes from includ-
ing the pole at t' = (k - p)/2ka The integral around the large circle
is then easily evaluated by expanding the integrand in powers of l/t.
The second term in Egq. (32) is generally quite small and may be esti-
mated by deforming the contour into straight lines in the lower half

plane along Re(t) = © and Re(t) = 1, plus small circles atout t =0




ot
= 1. A1l this leads to . éé;Tt

= Wop(n [(t' f'lﬁl&/— ] + O&F‘.}E‘)‘ﬁ] (33)

From Fig. 1 and the stipulation about principal values it is clear that

p>k
arg $ (34)
p k
hence our final result 1s
i
96\(“)@( ) k p > k)
(0] Do\ k) = =57 E
7\ zlp p+ k \3/ (p < k)
e e e COPYTRAL
1 SCRIPT
ETTER O
) @[ﬁrﬁzﬁ} S

The most remarkable feature of Eq. (35) is that, in the 1limit R - «,
it displays precisely the sort of discontinuity at the energy shell pre-
dicted by Eq. (2). Of course, the value of ;8\ right on the energy
shell is glven correctly by Eq. (29) and cannot be obtained from Eq. (35).
In fact, it is clear from Eq. (35) that these proncunced changes in magni-
tude take place within a narrow region about p = k, whose width is of
the order of cmne over the range of the force. The significance of this
result will be discussed in a later section.

IVe HULTHﬁN POTENTTATL

To make sure that the results just obtalned are not unique to the

cutoff Coulomb pctential, let us perform a similar calculation for a

potential with exponential screening. We shall use the Hulthén potential



- 10 -

. _.%_\ r <R
%‘2\(5‘{/}/- 1)_1 - ' . (36)
%?Féizfﬁ/ r >> R

V(r)

i

for which the 1 = 0 radial wave function may be written in closed form:
Bylkr) = NGa() o8 kra BRANL * 15 1 - 185 25 2), (37)

1y, (30)
’=kR<'l+'§—%_l>; E:S,+2kR. (39)

We assume R large enough that |n/kR| << 1; consequently « 1is real.
The normalization constant N and the phase shift are determined as
usual by the asymptotic form of F/o\(kr). This may be obtained by expand-

ing the hypergeometric function about 2z = 1, with the result that for

r >> R

(i3 - ia) iky, I(ig - i) -ik
e ~ Nwz)mbﬁmé\/Jr T+ 3g)TL - 3p %40)

Equation (40) may be written %\(kr) ~ sin(kr + _9/0\\) if we take

(1 + ig)r(ig)
N = zm%ip_i E(igl- ing

(41)

and

%‘: argg——g———-‘%—‘*—(l * 4 .I)ZIEE-E - io,). (42)

The case of interest is R » o, so that o -7 and § - . We may there-

fore estimate the gamma fTunctions by their as totic values, obtainin
& 2

DUE - 1g) . LR - ana)Xi¥0 + ofd)|; .
T(ig)  TiCikR + ig) (Zlmwl * ?(kR)J ’ (£3)
i
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the normalizaticn onstant and the phase shift then take on the familiar
values
N~ 1, %w %\ -1 leg (2kR). (44)

It is also interesting toc find the form of ggékr) when r << R.

Jsing the relationship T o

P
4
, : - 1
SPNa, by s z) = AVACHIRH bz)E.+ Oesﬂ (45)
between ordinary and confliuent hypergecmetric functions, we may write
FA(Kr) = + LW e = )
NS ®<R>+ ({}(kRﬂ ) ) (46)

a not unexpected result. T e T

Let, us turn now to the evaluation of I(p), which in this case can
te carried out exactly. Affer the variable of integration is changed to
z = l-expi-r/R), I(p) becomes

1 .
I(p) = 2333N9@{1) uzﬂ (1 - 25%;/2 N1 + ia, 1 - iB; 25 2z) dz, (47)

where
v = {p- kiR (48)

. - 9, . :
Thisg integral can be expressed 1in terms of a generalized hypergeometric

function:
. 2nkRNIA(n) . v
I(p) = W% + ig, 1 - g, 15 2, 2 + iy; 1). (49)

We may simplify Eq. (49 -onsiderably by invoking the series definitions

~f + \ ol Iy +4 : i | h 3 E. 3 =
~f the /%@%\ and /%@fx functions and using the fact that (1 + 2N

P

~
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_, . 2NkBNIA(7) z (L + 1a)(1 - 1)\
wAPs =TT 12 (2 + il.}%\(n-*- 1)t

n=0

POKANOA(D) - L
:--QL-Z§¥2L4§§@%%9, - ig; 1+ iy 1) - 1

i

- 1. (50)

This expression is valid for all p. When p =k, v = O and we

get

TiK) = (1 - ig + 1ig) 0N\ A
(k) N7Q\1)[%(l - id#%(Ifggqu J = é\%§(- A1) (51)
just as in Eq. (29); thus

218
| Iplk) = =g (52)

When p % k; both B and Y @are large compared to a. Again using the

asymptotic form of the gamma function we obtain

- N/\(n[:(l ; in(1. S g+ ig + iy‘W ] . @[-(—-IL_-T—]- (53)

I(p) Aln|( Y a+ 1 + iy P - K)R
“ur final expression for (plae{k) is then k\\\\__ﬁ_vp__‘_ CAPITAL
SCRIPT
/’_ LETTER O

pl;é(k _ n,e p -k - i) 1’5{9/ P+ k + 1%) . G ]

+ k - 1) p - k +
(54)

where A = l/Rn This agrees perfectly with the result of the previous
section in the region where both are valid, i.e., |[p - k! >> 1/R.
¥. DISTUSSION
The foregeing analysis can of course be extended to values of 7

beyond 7 = 0, although results in closed form are possikle only for the



- 13 -

~ - S 0 : .
eutoff Jouvloab potential. Lt 1s well knownl that the phase shifts so

obtained are given by

SN A\~ 1 log(2kR), (58)
provided that 7 << kR. When I >> kR, the phase shifts fall rapidly to
zerc because of the angular momentum barrier; the intermediate region
7~ KR is quite hard tc handle.

Under the assumption, however, that R 1s so large as to make con-

1C

tributicns from ¢ S kR generally negligible,™ comparison of Eqs. (11)

and (17) reveals that

e EW;@ r <R (56)

The equality does not hold for T > R because Kr) has logarithmic

~

distortions not possesed by i@\(z).

Let us now assume that (p]I‘k) is calculated as in the Introduction,

but using Eq. (56), rather than just 7\%;{2\, as the approximation to

A

,‘%}\(ﬁi\“ Quite cbviously, the result is identical to Eq. (2) except that

&;’%( is repiaced by &%(
[ - (& + i,l}w/ ( M

(EIIIE) ™ /6\3.’\ 7\—»6 [P ) k\‘/"‘ .\\zﬂ\l*l,y

\ .
Tt we now expand Eq. (/) in Legendre polynomials according to Eq. (14),

(57)

NABA
Il/;\{H}W \/ - (k + 1,1\
h 2p 2pk A\X
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where
Ea () (x-S ay (58)
/%\‘ LX-H H s
and

(59)

28\

We are primariiy ccncerned with the coefficlent §€< which 1s easily

obtained:

eé\::éL-&x - £}§39/- (x + i}igér (60)

Thus the 7 = 0 romponent of Eq. (é&{ ils given by

(o] Tp\k) = ?ﬁ\(ﬂ)w (P -k - 'Qi A (p + k + i;)"

2ip P+ k - 1 P - k+ i\

This agrees with the results of sec. III and IV when b§/; Qa{'both in
magnitude and phase (the limit A -+ G is understood). If the calcula-
tions of sec. IIT are repeated for higher values of 7, one again finds
agreement, with Eq. (57) fer %@/% Q@( We are therefore led to the con-
cluslon that the Coulomb T-matrix does possess a discontinuity at the
energy shell, and that Turthermore the T-matrix is correctly represented
off the energy shell by Eq. (2), provided é&%é( is replaced by 2%%??

It is not difficult tc see why Eq. (1) gives incorrect results on
nhe energy shell when the approximation (56) is used. In the first place
the Joulogb potential is a long-range potential, even though a conver-

gence factor 1s used. Hence we may expect to get contributions from the

asympt~ftiz region of yﬁ{g?, where the approximation is not valid. How-
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ever, becauss the rapidly oscillating factors

wy

appear after the angular integraticn, contributions from the asymptotic
reglon are negligible unless ip - k[ ~ l/R. This is precisely the con-
dition found in sez. III and IV.

In summary, then, we have seen that the disccontinuity in the T-matrix
found by Ckubu and Feldman and by Mapleton is quite real,ll and that off
the energy shell Eq. (2) is essentially correct. Thus, Eq. (1), which
is a valid definiticn of the T-matrix for finite range forces, may also
be used for the Coulomb force provided that shielding effects are taken
into aczcunt when }y= Q@{
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AFFRNDLK - JOULOMB SCATTERING AMPLITUDE

We have deliberately ignored the problem of evaluating (p[T[E) on
the energy shell, or the equivalent problem of finding the screened
Joulomb scattering amplitude in the 1imit of zero screening. The cus-
tomary way of doing this is to look at the coefficient of 3{397; in
the asymptotic expansion of Eq. (56). We have seen, however, that
Eq. (56) is valid only when r < R; it cannot be used when r 1is much
larger than the range of the force. On the other hand, the experimental
situation, in which measurements are made by a detector loczated well out-
side the range of the forze, clearly corresponds to r >> R.

One may argue that, as long as kr >> 1, 1t does not matter much
whether r <R or r > R; the asymptotic form changes very little. This
is probably true, but it would be nice to have a direct vérification such
as we have presented here for the T-matrix off the energy shell. This

involves performing the sum

21
g (27 + 1) El—jzﬁ;:—; Pz(cos.g) (A1)
7

where, for kR << 1,

gﬁ\: %A\- 1 log 2kR. (A2)
(Incidentaily, we note that g¢\~ n log(l + 1) for large 1, so that the
prhase shifts é@\ approach zerc as 1 approaches kR.)
At first we thoughtthat Eq. (2) might have precisely the correct
angular dependence on the energy shell, in spite of the fact that its

: . . . %/ ﬁéy/
magnitude is clearly wrong. However, upon evaluating AG\ for ‘5\ = 4
VY

1o

wve find



z+l;l—in;:%
- 4K

Rjé§%<}z,‘z+-15 1+ in; 54

N - 4: .

21(8 %) ;
NI < ofehg) oy

where as before R = l/l. Thus, the expansion of Eq. (2) on the energy

i 18y i
shell (with W replacing e\f% leads to
L W 1
< — 177\<cos 8) + R, (A4)

;%(f') = (1 + iy ;(21 + 1) =

Whe‘r.e L 1is vefy large but satisfies L << kR, Q(L\ is glven by
Eq. (A2}, térms of order _Tl/kR have been ignored, and R represents
the rest of the series. It is evident that even apart from the factor
DL+ in), the series in Eq. (A4) is different from that in (Al).
We could argue, as do Landau a’ni Lifshitz,8 that the quantity
L
Z(z‘z + 1)Ef\(cos 9)
=0 " '
app-roan;hes 28(1 - os g§) as L » o and so is only impertant when
6= e~ 1/L. In that case Egs. (Al) and (A4) differ only by a factor
of If1 -+ iﬂi)exp(_—Zi_%\Q = IM1 - i) except at very small angles, pro-
vided that ® is negligible when @ > e. (The factor (L - ip) hes
been noted previcusly; =f. Eq. (4).)
The above a:rgument is not very satisfying, but since we have been

unable to sum Eg. (AL, it -will have to do. The prescription for
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Ooiuining the cirisoon the energy sheil from Eq. (2) is then: (1) re-
1gA/ i3 ,

place e by o\7/» (2) divide by (1 - il)u This causes Eq. (4) to

become

- X e 2 (a5)

the extra factor of expl-in Log 2kr) coming from step /1). Note that

this expression for §Q<?} ma alse be obtained from the asymptotic
ferm of Bq. (56} if v = B. Assuming the ~orrestness of Eq. (AS), we
Lim

may then 1ist the behravicr of Resoo (plflk) near the energy shell as

fcliows:
e, b - k) N

D=k (AB)

R B N B R
.

n )1 :

i
Yl
=)
)
=
&
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FIGURE LEGEND

Flge 1 - Zocntour for evaluation of Eg. (32).
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